

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2009
2. REPORT TYPE

Conference Paper Postprint
3. DATES COVERED (From - To)

April 2007 – March 2009
4. TITLE AND SUBTITLE

TOWARDS A SECURE PROGRAMMING LANGUAGE: AN ACCESS
CONTROL SYSTEM FOR COMMONLISP

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-07-2-0032

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Howard Shrobe

5d. PROJECT NUMBER
NICE

5e. TASK NUMBER
00

5f. WORK UNIT NUMBER
06

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFRL/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2010-4

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES
This work was funded in whole or in part by Department of the Air Force contract number FA8750-07-2-0032. The U.S.
Government has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license to use,
modify, reproduce, release, perform, display, or disclose the work by or on behalf of the Government. All other rights are reserved
by the copyright owner. Presented at the 2009 International Lisp Conference, Cambridge MA March 22-25, 2009.
14. ABSTRACT
Computer security is becoming an increasingly important problem. Although, the problem is often described as one of network
security, the core of the problem is the vulnerability of computer hosts. There are many underlying causes of computer vulnerability,
but most of them are traceable to an underlying failure of language systems to enforce the semantics of object identify, extent and
type. Compounding this failing is the inability of most programming languages to express constraints on information flow and access
that would limit the damage due to a penetration. In this paper, we present an access control system for Lisp-like languages that
allows precise specification of which actors are allowed to perform what operations on which types of objects. Making these controls
non-bypassable in a language as dynamic as Common-lisp is a serious challenge; we present techniques based on use of the Meta-
Object Protocol (MOP) that achieve this goal; furthermore, we outline how hardware support can provide stronger guarantees within
this framework.
15. SUBJECT TERMS
security, access control, meta-object protocol

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

14

19a. NAME OF RESPONSIBLE PERSON
Lok K. Yan

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Towards a Secure Programming Language
An Access Control System for CommonLisp ∗

Howard Shrobe

MIT Computer Science and Artificial Intelligence Laboatory
hes@csail.mit.edu

Abstract
Computer security is becoming an increasingly impor-
tant problem. Although, the problem is often described
as one of network security, the core of the problem is
the vulnerability of computer hosts. There are many
underlying causes of computer vulnerability, but most
of them are traceable to an underlying failure of lan-
guage systems to enforce the semantics of object iden-
tify, extent and type. Compounding this failing, is the
inability of most programming languages to express
constraints on information flow and access that would
limit the damage due to a penetration. In this paper,
we present an access control system for Lisp-like lan-
guages that allows precise specification of which actors
are allowed to perform what operations on which types
of objects. Making these controls non-bypassable in a
language as dynamic as Common-lisp is a serious chal-
lenge; we present techniques based on use of the Meta-
Object Protocol (MOP) that achieve this goal; further-
more, we outline how hardware support can provide
stronger guarantees within this framework.
∗This material is based on research sponsored by the Air Force Re-
search Laboratory, Intelligence Advanced Research Projects Activ-
ity under agreement number FA8750-07-2-0032. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
the Air Force Research Laboratory,Intelligence Advanced Research
Projects Activity or the U.S. Government.

Keywords security, access control, meta-object proto-
col

1. Software Insecurity Arises from The Lack
of Enforced Semantics

All modern commercial operating systems are vulnera-
ble. Recent reports have included hacking into the bank
account of French President Sarkozy1 and suspected
Russian use of “botnets” during the war with Georgia.2

These are merely highly visible examples of a much
larger problem. Figure 1 shows the rate at which attacks
have been growing (4) while (10) documents that, de-
spite years of patching, the skill level required to launch
an attack has been decreasing due to accumulated tool
development and software engineering by the attacking
community.

Figure 2 shows a catalog of vulnerabilities in the
Firefox browser collected in a previous project.3 From
this, it is clear that nearly all of the vulnerabilities arise
from a failure of the underlying hardware and soft-
ware to enforce the semantics of object extent (e.g.,
buffer overflows), identity (e.g., storage management
bugs that lead to “dangling pointers” causing two con-
ceptually different objects to occupy the same space),
and type (e.g., faulty method dispatch caused by pass-
ing an integer to a routine expecting an object).

It has been obvious for some time that the systematic
use of a type safe language (e.g., Lisp, Java, ML) could
remove many of the current vulnerabilities. Neverthe-
less, prudent design is based on “defense in depth” i.e.
providing many independent reasons why an attacker

1 http://www.informationweek.com/news/security/

attacks/showArticle.jhtml?articleID=211300006
2 http://www.gsnmagazine.com/cms/features/

news-analysis/1042.html
3 Conducted as part of the DARPA Application Communities pro-
gram

POSTPRINT

1

mailto:@csail.mit.edu

Figure 1. The Number of Successful Attacks is Grow-
ing Rapidly

Category Description N
Stack
Overflow

Ill formed data causes overwriting of
stack frame with data that is then
branched to for execution

2

Array Ac-
cess

Reference to data outside bounds of ar-
ray which is then branched to for exe-
cution

2

Heap
Overflow

Ill formed data causes overwriting of
heap with data that is then branched to
for execution

11

Dead
Pointer

Use of an invalid pointer to inject data
that is then branched to for execution

3

Trampoline
Errors

Passing of invalid data to method dis-
patch routine causes branch to arbitrary
position in memory

2

Garbage
Collection

Violation of memory conventions
causes garbage collector to create dead
pointers

13

Figure 2. Vulnerabilities in Firefox

cannot succeed and providing mechanisms that limit
the extent of the damage that a successful attacker can
render. In addition, many popular types of applications,
e.g. web servers, handle the data of many clients lead-
ing to a need for a principled mechanism for guaran-
teeing that the information flows allowed by the sys-
tem are limited to those desired by its designers. Sim-
ilarly, applications such as browsers, often support the
use of dynamically loadable code from remote users
(e.g. scripts), leading to a need to “sandbox” or com-
partmentalize the privileges available to such code.

Thus, in addition to the semantics of object identify,
type and extent, it is crucial to define notions of locality
(i.e. grouping of objects based on their shared context),
privilege (i.e. the rights of individual computational
actors to access and modify data) and information flow
and to actively enforce these notions.

In a retrospective on the MULTICS (11) project,
Saltzer and Schroeder (13) elicited several principles
for the construction of such software:

1. Complete mediation: Every access to every object
must be checked for authority– i.e. we must both
(a) check the semantic validity of every operation
and (b) check the authority on every instruction per-
formed and every word of data.

2. Least privilege: Each module is granted only the
minimal privileges necessary to do its job—this can
be controlled to the level of individual privileged
processor instructions on specific data types and
words of memory.

3. Separation of privilege: Protection mechanisms should
require that more than one condition should be met
before access is permitted. More generally modules
should distrust one another and check one another as
in (5). This provides breach and error containment—
rather than a single breach giving complete access to
unrelated systems, this makes it necessary to com-
promise (or find errors in) a collection of compo-
nents in order to subvert a system.

We have been working to create the mechanisms
that can support these principles and have been design-
ing language features that make the description of the
mechanisms reasonably simple. As with the more ba-
sic properties of identity, type and extent, the critical
step involves adding metadata to all objects within the
system; in this case, the metadata specifies the “com-
partment” within which each object resides and the
“principal” (i.e. a person or computational element of
the software system) on whose behalf each thread ex-
ecutes. Coupled to this meta-data are a set of access
rules, specifying which principals are allowed to per-
form what operations on which types of objects and
an “access control system” that actively enforces these
rules.

In this paper, we present the design of such an ac-
cess control system for CommonLisp. CommonLisp
is in many ways a natural vehicle for such a system,
since it already enforces the more basic properties of
object identity, type and extent without which any ac-
cess control system could easily be subverted. In ad-
dition, the existence of powerful reflection capabilities
eases the implementation. Finally, CommonLisp is a
highly dynamic and open language, making it an in-
teresting vehicle for exploring how completely one can
enforce access controls in such an environment. On the
other hand, CommonLisp is quite unsuited to the task
because it lacks any non-bypassable isolation mecha-

2

nisms of its own (e.g. internal symbols of any package,
including those that implement the substrate of the sys-
tem, can be easily found). In the last section we discuss
how to contain these problems and produce a secure
framework.

2. The Model
Access control fundamentally is concerned with speci-
fying who is allowed to do what to which objects. Con-
ceptually, this can be expressed using an access control
matrix (8; 9). The most common use of this model is
the use of access control lists (ACL’s) on files in com-
modity operating systems; these control the granting of
a limited set of privileges (e.g. read, write, execute)
to specific entities (i.e. users or groups) over coarse
grained objects (files, directories). Such a model is at
the least inconvenient and inexpressive. Later models
(1) enrich the language by including notions such as hi-
erarchies (or DAG’s) of users, objects, and operations
while (6; 2) introduce the notion of the roles a user
might be playing and managing access in terms of such
roles.

Our model draws on these, however, we are con-
cerned with the systematic fine-grained control of ac-
cess to all objects within the memory of the system, not
just to external objects like files or directories. Thus, we
center our model around CommonLisp objects and the
generic-functions that operate on them. However, we
extend this model as follows:

• Objects: Every object is an instance of a class. In
addition, every object “lives” within a compartment.

• Compartments: A compartment is an aggregation
of objects whose access rights are managed in com-
mon. Every object belongs to a single compartment.
Compartments are themselves represented as ob-
jects and are therefore located within the class hi-
erarchy.

• Principals: A principal is any active entity within
the system, such as a user or a system components
(e.g the scheduler). Principals are objects and there-
fore fit within the class system and live within a
compartment. which

• Threads: Every thread has an associated princi-
pal on whose behalf the thread is executing. Every
thread also has an associated compartment in which
it allocates new objects.

• Access Rules: An access rule controls which princi-
pals are allowed to invoke which generic functions
on objects in which compartments. An access rule
is specified in a manner similar to a method, it con-
tains:

The name of a generic function.

A class specifier for the principal.

A class specifier for the compartment of each
argument.

An access rule is applicable when:

The principal of the current thread is a member of
the class specified by the principal class specifier.

The compartment of each actual argument is a
member of the class specified by the compart-
ment class specifier for the corresponding formal
argument.

The “body” of an access rule is limited to the key-
words :permitted and :denied.

Figure 3 shows an example access rule. This rule
states that any Principal whose class is “Demo-
Principals” can perform a Plus operation on any pair
of operands both of which are in “Demo Compart-
ments”.

When a generic function is applied to a set of argu-
ments, the compartments of the arguments are used
to fetch all applicable access rules. These are pro-
cessed in most specific-first order, looking for an ac-
cess rule whose body is :permitted or :denied. If an
access rule with a :permitted body is found first, the
thread is allowed to invoke the generic function on
the arguments. If an access rule with a :denied body
is found first, then an error is signaled. Finally, if
there is no applicable access rule then an error is sig-
naled. Thus, the default behavior is to deny access to
any generic function (the default is to fault).

• Gates: A gate is a package of a generic-function, a
compartment and a principal. A gate is a funcallable
object; when it is called, the principal and compart-
ment of the thread are rebound to those of the gate
and the generic-function is called. The principal and
compartment are rebound on return (normal or ab-
normal) from the generic function. These are very
similar to the gates in MULTICS (11). Gates are
the only means for changing a thread’s compartment
and principal.

3

Gates are objects and therefore live in a compart-
ment. Access rules also control which principals can
invoke which gates (based on the compartments of
the gate and of the arguments).

We make the (invalid for CommonLisp) assumption
that all operations are generic functions. As a result,
the ability to allocate, access, and modify all objects is
controlled by access rules.

In particular, one class of access rules control reader/write
methods. These methods specify which principals can
access which slots of objects in a particular compart-
ment.4

A second class of access rules controls allocation
of objects which is possible since the MOP specifies
a series of generic-functions (e.g. allocate-instance,
initialize-instance) that constitute the implementation
of make-instance. First of all these rules control whether
the principal of the running thread is attempting to al-
locate the object in the current compartment of that
thread and secondly checks whether the principal is al-
lowed to allocate in that compartment at all. Finally,
these rules check that the principal has the right to ini-
tialize each of the slots as specified.

A third class of access rules specify which gates can
be invoked by which principals.

Finally, access rules can be specified for arbitrary
generic functions limiting a principal’s ability to invoke
specific services.

There are several consequences of the use of such
access rules. Suppose an object is in compartment-
1 and that principal-2 is not sanctioned to access the
slots of objects in compartment-1. Then from the point
of view of principal-2, object-1 is opaque; even if its
slots contain objects that principal-2 can manipulate,
principal-2 cannot discover these objects via object-1.

Another consequence is that privilege in the system
need not be hierarchical; there need be no single ac-
tor (like the kernel or “root” user of an OS) that has
all privileges. Each principal has a limited set of privi-
leges, ideally as few as necessary to do its job. Inheri-
tance can be used to compactly specify classes of prin-
cipals that share privileges and classes of compartments

4 In CommonLisp slots can also be accessed using the function
slot-value. The MOP specifies that slot-value is defined in terms
of the generic-function slot-value-using-class. Although we have
not done so yet, the access rules for reader/writer methods should
also control slot-value in exactly the same way.

whose privileges they share; but this need not imply
strictly hierarchical layers of increasing privilege.

Information flows can be effected only by reading
information from objects in one compartment and then
writing this information into objects in another com-
partment. But, because, these actions are governed by
access rules it should be possible, in principle, to for-
mally analyze the information flows sanctioned.

Since the only way to change a thread’s privileges is
to invoke a gate and since gates can only be created if
the access rules sanction the allocation and initializa-
tion operations involved, at least in principle it is pos-
sible to formally analyze what privileges are accessible
to a thread.

Thus, as long as the set of access rules is static, pre-
dictable control of information flow is possible, even in
a highly dynamic environment like CommonLisp.

3. An Application Example
In this section we describe a simple application that
uses these building blocks. The application is a sim-
plifed version of a graphical editor for military “couse
of action diagrams” that we had built as part of a pre-
vious project. The tool is known as CCOAT (Comman-
der’s Couse of Action Tool). Our goal was to illustrate
that we could simply retrofit access controls into this
exiting body of code. In the retrofit, there are four com-
partments of data:

1. Top: Data in this compartment is privileged.

2. Blue: Data in this compartment represents the “blue
view” of the situation.

3. Red: Data in this compartment represents the “red
view” of the situation.

4. Common: Data in this compartment is open and
accessible to all.

There are three types of users, each with different
access rights:

1. Commanders: Are able to create, modify and access
all application data.

2. Blue: Are able to create and modify data in the
Blue compartment and read data in the Common
compartment. Blue users cannot access or modify
data in the Top or Red compartments. Blue users
execute with the Blue compartment as their default
compartment.

4

(def-aif-method plus :permitter ((principal demo-principals)
(p1 demo-compartments)
(p2 demo-compartments))
:permitted)

Figure 3. An Access Rule

3. Red: Are able to create and modify data in the Red
compartment and read data in the Common com-
partment. Red users cannot access or modify data
in the Top or Blue compartments. Red users execute
with the Red compartment as their default compart-
ment.

Figure 4 illustrate the code used to establish the
compartments and principals. This involves nothing
more than creating sub-classes of the base classes
User-Principals and User-Compartments, and then
instantiating instances of these classes. The class for
the Common compartment has both the Red and Blue
compartment as super-classes; this allows principals
with access to Red compartments to inherit access to
the Common compartment.

;; Principals

(defclass ccoat-principals (user-principals) ())

(defclass ccoat-commander-principals (ccoat-principals) ())

(defclass ccoat-blue-principals (ccoat-principals) ())

(defclass ccoat-red-principals (ccoat-principals) ())

(defclass ccoat-compartments (user-compartments) ())

(defclass ccoat-commander-compartments (ccoat-compartments) ())

(defclass ccoat-blue-compartments (ccoat-compartments) ())

(defclass ccoat-red-compartments (ccoat-compartments) ())

(defclass ccoat-common-compartments

(ccoat-red-compartments ccoat-blue-compartments)

())

(defparameter *ccoat-commander-compartment*

(make-instance ’ccoat-commander-compartments

:name "ccoat commander compartment"

:magic-number (incf *user-compartment-number*)))

...

Figure 4. Code Establishing Compartments and Prin-
cipals in CCOAT

Next we need to define our data structures and to
specify which operations on these objects are available
to which principals. Since the application is a graph-
ical editor, most application object are instances of
sub-classes of a base class called point-like-objects.
Figure 5 shows the code necessary to extend the appro-

priate access rights to these objects for the three types
of principals. To make the specification more com-
pact, we created two macros Extend-Multiple-Read-
Permissions and Extend-Multiple-Write-Permissions.
We show the expansion of this macro for the Comman-
der class but use the macros for the other classes.

Other data structures and access rules are specified
in a similar manner. The CCOAT editor is implemented
as a CLIM application. Separate CLIM application
frames are set up for each user. The application pro-
vides commands to create objects representing differ-
ent types of military units. Red users can only create
red objects while blue users can only create blue ob-
ject. Commanders can create objects in any compart-
ment. The background map is created in the common
compartment at application startup. All application ob-
jects are held in a common data structure that is shared
by all users. The CLIM display loop in each appli-
cation frame iterates over the objects in this common
data structure, presenting each on its display. However,
when a red user attempts to display a blue object (or
a blue user attempts to display a red object) and ac-
cess violation is signalled. This is because displaying
the object requires accessing its X and Y slots and this
is prohibitted by the access rules. The CLIM display
loop catches and ignores this access violation and then
goes on to display the next object. The net result is that
the Red user’s display shows only the background and
red objects, which the blue user’s display shows only
the background blue objects. The commander’s display
shows all objects. Figure 6 shows an example of a set
of CCOAT displays.

4. Using the Model to Build Secure
Components

In the previous section we illustrated how the build-
ing blocks described in Section 2 can be used to build
applications that segregate data into multiple compart-
ments, extending different access rights to different
classes of principals. In this section, we discuss how
these building blocks allow one to build operating sys-

5

(defclass point-like-object ()

((x :initarg :x :accessor x)

(y :initarg :y :accessor y)))

;;; commanders can see anything ;;; blue guys can see blue data

(defmethod x :permitter (extend-multiple-read-permissions (x y)

((principal ccoat-commander-principals) ((principal ccoat-blue-principals)

(point-like-object ccoat-compartments)) (point-like-object ccoat-blue-compartments)))

t) ;;; red guys can see red data

(defmethod y :permitter (extend-multiple-read-permissions (x y)

((principal ccoat-commander-principals) ((principal ccoat-red-principals)

(point-like-object ccoat-compartments)) (point-like-object ccoat-red-compartments)))

t)

;;; commanders can change anything ;;; blue can mung blue

(extend-multiple-write-permissions (x y) (extend-multiple-write-permissions (x y)

((new-value t) ((new-value t)

(principal ccoat-commander-principals) (principal ccoat-blue-principals)

(point-like-object ccoat-compartments))) (point-like-object ccoat-blue-compartments)))

;;; red can mung red

(extend-multiple-write-permissions (x y)

((new-value t)

(principal ccoat-red-principals)

(point-like-object ccoat-red-compartments)))

Figure 5. CCOAT Access RulesApplica'on Structure 
Blue View 

Red View 

Commander View 

Red 

Blue 

Cmdr 

Common 

Carl playing 
Cmdr 

Hes playing 
Red 

Andre 
playing Blue 

Figure 6. An Example CCOAT Display

6

tem software in a novel way that is mindful of the need
to maintain security properties such as privacy and in-
tegrity. In section 1 we cited several key principles for
such software were described by Saltzer and Schroeder

1. Complete mediation.

2. Least privilege.

3. Separation of privilege.

Current computer systems violate these principles
with abandon. Operating systems, for example, divide
the world into a “kernel” that runs with unlimited priv-
ileges and “user spaces” that are isolated from one an-
other and the kernel. However, within each user space
there are few tools for decomposing privilege and for
guaranteeing that all operations are, in fact, checked for
authority. Complicating the problem is that the kernel
in most systems has grown to enormous size offering
a large “attack surface” with the attraction for attack-
ers of achieving full control of a system. Much server
software, even those that run in user mode, present the
same problem; a large complex body of software man-
ages many users’ data without adequate controls on ac-
cess and information flow.

Compartments, principals, access rules and gates
provide a set of building blocks for a different way
of structuring such software. To illustrate the process,
and the design patterns that emerge, we will use an
example of a “log manager” a utility that accepts log
entries from a variety of sources and commit these to
persistent storage (presumably in encrypted form). The
challenge is to build such a utility in such a way that
there is a very low possibility that it will leak informa-
tion between its various clients.

The starting point of the design is to consider who
are the actors in the scenario, what data these actors
manipulate, what interactions between the actors are re-
quired and what constraints exist on information flow.
From these one then defines a set of principals corre-
sponding to the actors and compartments into which
the data is aggregated. In the current example, we cre-
ate a principal for the Log-Manager per se and a prin-
cipal for each client (e.g. User-1 and User-2); we also
create a compartment for each of the actors (e.g. Log-
Manager-Compartment, User-1-Compartment, User-
2-Compartment). The access rules specify that the
Log-Manager can access data in the Log-Manager-
Compartment and that User-1 can access any data in

Compartment-1 in any way desired (and similarly for
User-2 and Compartment-2). At this point we have 3
isolated sub-systems completely incapable of interact-
ing; it is as if we have 3 separate disconnected comput-
ers.

Of course, it is desired that User-1 and User-2 should
be able to communicate with the Log-manager. How-
ever, it is not desired that log entries from User-1 (and
data that these reference) should be able to be trans-
mitted to User-2 via the Log-Manager. Instead of act-
ing like completely separate computers, we’d like it to
appear there is a FIFO connecting User-1 and the Log-
Manager and a separate FIFO connecting User-2 and
the Log-Manager and that the data in these FIFO’s are
read-only.

We can do this as follows: For each user, the Log-
Manager creates an additional principal; this principal
can be thought of as a proxy for the Log-Manager
in its interactions with each user. Thus we have 2
new principals: Log-Manager-Acting-for-User-1 and
Log-Manager-Acting-for-User-2. In addition, the Log-
Manager create two new compartments (User-1-Log-
Manager-Compartment, User-2-Log-Manager-Com-
partment) to support the interaction between the log
manager and each of the users. As the owner of these
compartments, the Log-Manager grants itself the right
to create new gates in these compartments.

We next consider the significant operations in the
interaction. These are 1) Create a new log-entry data
structure and 2) Add a log-entry to the log data-
structure, represented by the Create-Entry and Add-
Entry generic functions. We also impose access rules
that only allow Log-Manager-Acting-for-User-1 to
call Create-Entry and Log-Manager-Acting-for-User-1
to allocate a log-entry in User-1-Log-Manager-Com-
partment (and similarly for User-2). We will refer to
these compartments and principals as “satellites”. No-
tice that we are using a defense in depth strategy: To
build a new entry requires calling Create-Entry, but
Create-Entry needs to call make-instance (and its sub-
routines); unless a principal is granted access to both
generic-functions it cannot even build an entry.

Nevertheless, at this point the components are still
isolated since Create-Entry can only be called by the
Log-Manager-Acting-for-User-1 principal. In order to
allow the thread acting on behalf of User-1 to actually
build an entry, the Log-Manager must therefore create
a Gate whose procedure is Create-Entry and whose

7

Figure 7. Pattern for limited interactions

principal and compartment are those belonging to
Log-Manager-Acting-for-User-1; this gate is created in
the Log-Manager-Acting-for-User-1 compartment. Fi-
nally, the Log-manager grants the User-1 principal the
right to invoke gates in the Log-Manager-Acting-for-
User-1 compartment. Given these structures, User-1
can invoke the gate, temporarily switching to the satel-
lite principal and compartment; acting as the satellite
principal the thread calls Create-Entry, allocating a new
log entry in the satellite compartment. This is shown in
figure 7. Notice in the figure that the Log-Manager’s
compartment also contains a gate whose procedure is
Add-Entry, and whose compartment and principal are
those of the Log-Manager. The Log-Manager grants
the principal Log-Manager-Acting-for-User-1 the right
to invoke this gate. After Create-Entry builds the new
log-entry, it invokes this gate, switching to the princi-
pal and compartment of the Log-Manager itself, and
adding the new entry to the log. At this point, both the
first and second gates return, restoring the principal and
compartment to that of User-1.

A bit of consideration shows that the structure we
have created provides only the most limited informa-
tion flows among the users and the Log-Manager. The
only operation that User-1 can perform on its satel-
lite compartment is to allocate new log entries and

pass them on to the log manager. Neither User-1 nor
the Log-Manager have write permission to their shared
satellite compartment. Thus, the Log-Manager cannot
act as a vehicle for leaking information from User-1 to
User-2.

We refer to the pattern illustrate above as the “hub
and satellite” pattern and it is a very common way
of structuring interactions among the components of a
software system where highly controlled information
flows are desired. This pattern illustrates how we fulfill
each of the 3 principles mentioned above:

1. Complete Mediation: All generic functions are
controlled by access rules. Every operation is moni-
tored.

2. Least Privilege: Each principal is granted the most
limited privileges it needs to get it jobs done. For ex-
ample, the Log-Manager can only add entries to its
log; it cannot access information in users’ compart-
ments. Users similarly are never granted access to
Log-Manager data; they are only allowed to create
entries and pass them to the Log-Manager.

3. Separation of Privilege: In order to add an entry
to the log, one must have permission both to call
Create-Entry and to allocate objects in the satellite

8

compartment. Both checks would have to be by-
passed by an attacker.

5. Implementation Techniques
As suggested in the previous section, the abstract model
is implemented using the tools provided by CLOS and
in particular by the MOP. The main techniques are as
follows:

• All classes inherit from a common base class that
provides a slot for the compartment of the object.

• Access rules are compiled (in an obvious manner)
into methods whose qualifier is :permitter.

• We define a new method combination, that is es-
sentially an OR method combination, except that it
fetches :permitter methods.

Corresponding to each original generic function, a
new generic function is generated (with an unin-
terned mangled name) and that uses this method
combination. Thus the template for each of these
checking functions is:

(or
(eql :permitted

<list of :permitter-method calls>)
(error ...))

• We define a new method combination, that is used
by all generic functions. The combined method that
is built first checks the access control rules and then
calls the normal elements of the combined method.
The template for each combined method is:

(apply <corresponding-gf>
<the thread’s principal>
(mapcar #’compartment arguments))

<rest of normal method combination>

It would have perhaps been more elegant to use
the MOP to control how the :permitter methods are
fetched, in particular to fetch them based on the
types of the compartments of the arguments rather
than the types of the arguments. The MOP provides
an entry for doing this, compute-discriminating-
function as well as lower level entry points, compute-
applicable-methods and compute-applicable-methods-
using-classes. In some implementations there is

a cache of previously computed applicable (com-
bined) methods and this is checked in compute-
discriminating-function; if the applicable method is
already in the cache, then there is no need to call
compute-applicable-methods. However, we only
want to change how each actual argument is used
to fetch applicable methods, i.e. we want to provide
the ability to substitute a “argument for dispatch-
ing” for each actual argument. This must, therefore,
be done within compute-discriminating-function
before checking the method cache. Were this not
true, we would have only modified the lower level
compute-applicable-method.

The current principal and the current compartment
are represented as slots in a special object that repre-
sents the “machine state”. Gates are implemented as
instances of a subclass of funcallable-objects. When in-
voked the gate, “rebinds” the compartment and princi-
pal slots of the machine state, runs its code and then re-
stores the machine state. Rebinding the machine state,
is done by saving the machine state in internal slots
of the gate and modifying the appropriate slots of the
object representing the machine state and then revers-
ing these steps on exit. Of course, the compartment
and principal slots of the machine state should not be
modifiable by any other method. This is achieved by
wrapping the accessor methods for these slots with spe-
cial, implementation dependent code, that checks who
is calling the accessor and signaling an error unless the
caller is a gate.

6. Dynamic Access Rules
We have so for, for the most part, been assuming that
the set of compartments, principals, and access rules is
static. However, in Section 4 we talked about creating
such entities on the fly (e.g. we discussed the idea of the
Log-Manager creating new satellite compartments and
principals and access rules governing them). There are
several reasons why the situation cannot be completely
static, including:

• As illustrated in section 4 many components act like
servers; as new clients enter the system (e.g. new
users log in, new web sessions are opened, etc.)
there is a need to create the appropriate infrastruc-
ture to serve their needs while preserving the desired
inter-client isolation.

9

• It is imperative that there be mechanisms for re-
voking access rights that have been extended to bad
players. Such revocation is inherently a dynamic op-
eration.

• We would like the system to be dynamic in the sense
that it should be possible to introduce new services,
applications, etc. while the system is running. These
will need to dynamically instantiate a set of princi-
pals, compartments and access rules as part of their
startup transient.

However, we do not want this dynamism to become
a back door for subverting existing controls. In particu-
lar, if anybody is allowed to add or remove a new access
rule, then this could be used to deny legitimate services
or to extend illegitimate privileges to some set of users.
In effect, the protection system itself could easily be-
come the locus of attack. We, therefore, need a way to
allow dynamism but to impose constraint on that dy-
namism; we also need to ensure that these mechanisms
are not bypassable.

To achieve these goals we extend the existing frame-
work by noting that access rules are implemented as
methods and that the MOP provides generic func-
tions that implement the process of adding and remov-
ing methods, in particular: Add-Method and Remove-
Method. Since these are generic functions, they can
have access rules applied to them,5 thereby limiting
who can change generic which types of access rules.

Generic functions are objects and therefore fall into
a class system. This allows us to make all generic func-
tions in an application, for example, inherit from a sin-
gle base-class. In addition, principals are also objects
falling within the class hierarchy, so we can create Prin-
cipal classes for the developers (and users) of the appli-
cation. This allows us to compactly specify who is al-
lowed to change the methods implementing the generic
functions making up the application, by providing :per-
mitter methods that use these base classes as method
specializers.

During the development period of the application, it
is convenient to extend blanket rights to all developers
to change any generic functions that are part of the ap-

5 In the current implementation this isn’t strictly true, since we ac-
tually only control generic functions whose meta-class is a special
class of our design. Add-method and remove-method are standard
generic functions. We deal with this by using an :around method
whose specializers are all T; this calls out to a generic function of
the right meta-class.

plication. After deployment, however, we might want
to change who has this right, limiting it to a subclass
of developers empowered to patch the running system.
Each of these can be easily and compactly specified.

At this stage, we have 1) A set of access rules gov-
erning who can perform which generic functions (these
are implemented as :permitter methods on the applica-
tion generic functions) and 2) A set of access rules gov-
erning who can change these generic functions (these
are implemented as :permitter methods on Add-Method
and Remove-Method).

The next step in the process is to create a set of ac-
cess rules governing who can change the access rules.
Like all access rules, these are implemented as :per-
mitter methods. Furthermore, like the access rules that
govern who can change generic functions, these are
also methods on Add-Method (and Remove-Method).
To see why, recall that Add-Method takes two argu-
ments: A generic-function and the method to be added.
In the normal case, the first argument is a generic-
function implementing application functionality and
our access rule limits who can add (remove) new meth-
ods to that generic function. However, if the generic-
function is itself Add-Method (or Remove-Method),
then adding a new :permitter method controls who is
allowed to add (or remove) methods from the generic-
function Add-Method (or Remove-Method). But the
access rules governing who can change access rules
are, in fact, :permitter methods for the Add-Method
(Remove-Method) generic-function. Thus imposing
the correct :permitter methods controls who can change
access rules. The meta-circularity closes the loop as
a final set of access rules controls who can add (or
remove) :permitter methods to Add-method. This is
shown in figure 8. In particular, this last :permitter is
applicable to itself; once in place it says that it cannot
be removed and that no other such method can replace
or override it.

The consequence is that once the final :permit-
ter method is in place it establishes a chain of non-
bypassable protections. It protects itself and in turn it
protects the access rules that limit who can change ac-
cess rules. These in turn control who can change the
methods that implement application generic functions
and the :permitter methods that control who can invoke
which application generic functions.

In addition to the mechanisms already discussed, it
is necessary to develop conventions governing which

10

Figure 8. Controlling Dynamism

principals are allowed to impose what kinds of access
rules. As we saw in Section 4 there is often a natural
notion of a system component (e.g. the Log-Manger)
owning a set of compartments, particularly compart-
ments that it has created. Obviously, this component
should have the unique right to specify access rules
over data in these compartments. But can this compo-
nent (i.e. the Principal representing the component per
se) delegate this authority to other principals and if so,
to which ones. This is still the subject of future devel-
opment and requires further elaboration of our policy
model.

7. CommonLisp Presents Challenges
In section 6, we showed that we can limit the degree
of dynamism involved in changing access rules. But
we have been ignoring rather extreme weaknesses of
CommonLisp that allow the model to be subverted.
These weaknesses include:

• Not all CommonLisp data are class instances op-
erated on by generic functions. In particular, list
structures are built from CONS cells which pro-
vide no slots to represent their compartment. Other
immediate data (e.g. FIXNUMS) similarly have no
easy way to represent compartments. This violates
the basic assumption of our implementation that all

data live in compartments and are only operated on
by generic functions that can be “wrapped” with
:permitter methods. It would be possible to asso-
ciate a compartment with such structures using weak
hashtables.6 This works for everything but numeric
data, where we might want to distinguish the integer
1 in compartment A from the integer 1 in compart-
ment B. Unfortunately, all 1’s are both equal and eq
to one another so there is no way to distinguish them
without boxing them into larger structures or to use
hardware tagging as suggestion in Section 8.

• Normal user code can easily call internals of the lan-
guage system implementation. The package system
is the closest thing to a module system provided,
but internal symbols of any package can be found
and invoked by any code. Worse yet, the implemen-
tations normally provide reasonably good tools for
discovering the internal functions in a package.

• Key internal data-structures of the CommonLisp
language implementation may be built from such
data and may be operated on by non-generic func-
tions that cannot be wrapped. When combined with
the previous point, it becomes reasonably straight-
forward to find and change the internal data struc-

6 We thank one of the reviewers for this suggestion.

11

tures of method combination, method caching, etc.
Indeed, generic-function-methods returns a list of
methods that can be modified.

• Function cells of symbols can be accessed and over-
written; this is true for generic functions as well
as normal functions. This means that an attacker
can inject code that could, for example, change the
function-cell of Add-method, bypassing our entire
scheme.

• Any function, including a generic function, can be
Advised.

• The slot-access protocol includes a very low level
interface, standard-instance-access, that cannot be
further specialized.7 This can be used to bypass our
higher level wrappers.

These are not insurmountable problems, but dealing
with all of them would require much effort. Many of
the problems enumerated above would go away if ev-
ery object (including immediate data) were to have a
compartment and if every function were a generic func-
tion. Under such conditions, the techniques illustrated
in section 4 could be applied systematically to the en-
tire language implementation.

8. Hardware Support
In (3) Knight and Brown describe a processor that
can provide direct hardware support for the model de-
scribed in this paper and we (Tom Knight, Andre de-
Hon and I) are currently working on elaborating and
implementing such a processor. The core idea is to
structure the machine as a tagged processor inspired by
and similar to the Lisp Machine (7) and other tagged
processors (12). In our case, the tag encodes both the
datatype and the compartment of the word it is attached
to. Special internal processor registers hold the current
principal and compartment and these are only accessi-
ble via special instructions.

In the hardware, access rules are applied to each in-
struction, checking the datatype and compartment of
each operand. Read access rules check the compart-
ment of the object being read from as well as the com-
partment of the datum fetched from the object. Write
rules check the compartment of object being written
into, the datum in the slot being overwritten and of
the write datum. There is a procedure call instruction

7 We thank one of the reviewers for calling this to our attention.

which checks the compartment of the invoked proce-
dure. As a consequence it is possible to protect specific
words of memory from being overwritten. Using these
hardware level tools, it becomes possible to layer the
implementation; control over slot readers and writers
is translated into hardware level enforcement and is to-
tally non-bypassable. Using this base, the mechanisms
for wrapping all generic functions can also be made
non-bypassable, meaning that the entire access control
system would be inviolable.

PC

ALU

Memory

Register File

I−Store

Combine
 Tags

Process ID

security
violation

TMU

Figure 9. The Tag Management Unit

The hardware mechanisms proposed in (3) is sur-
prisingly simple and are shown in figure 9. All words
whether in memory or machine registers (including
the program counter (PC)) have a tag including the
datatype and the compartment of the datum. The Tag
Management Unit (TMU in Figure 9) runs in parallel
with the normal data path of the processor and is imple-
mented as a modest size hashing cache, called a Hash
Execution Unit or HASHEX; this is similar in structure
to the TLB’s used for virtual memory translation and
should occupy about the same amount of chip space.
The HASHEX computes a hash of the current instruc-
tion, the tags of all the operands, the current principal,
and the tag of the PC. It uses this hash value to fetch a
word from the HASHEX cache memory; this returns a
flag indicating whether the operation is permitted and
the tag of the result of the instruction. This is com-
bined with the result of the normal processor data path
and written back into the register file. The HASHEX
is required to complete its execution by the time that
the normal datapath commits its results; this seems to
present no serious challenge. In addition, the HASHEX
is a cache and it is possible that the cache can miss and

12

need to be refilled from an access rule table in main
memory. If the cache is not large enough to hold the
working set of access rules, then the miss rate will be
too high and will seriously degrade performance. We
are still studying how big this needs to be, but prelimi-
nary results suggest that this too is manageable.

9. Summary
In this paper we have introduced an access control
model for Lisp-like languages. The key elements of
this model are compartments, principals, access rules
and gates. We presented an illustration of how this
model can be used to achieve several of the principles
guiding secure system construction stated by Saltzer
and Schroeder (least privilege, separation of privilege,
complete mediation). We presented an implementation
technique in which all objects are extended to include
an extra piece of metadata, the compartment and in
which access rules are compiled into wrappers meth-
ods that limit access to generic functions based on the
compartments of the arguments and the current princi-
pal. In the last two sections we described how the ex-
treme openness and dynamism of CommonLisp make
it difficult to implement the model in a completely non-
bypassable manner and how novel tagged hardware can
address this problem.

10. Acknowledgements
I would like to thank Andre deHon, Thomas Knight
and John Mallery who have collaborated with me in
the larger project of which this effort is a part. Many of
the ideas contained here were inspired by interactions
with them.

References
[1] Lee Badger, Daniel F. Sterne, David L. Sherman, Ken-

neth M. Walker, and Sheila A. Haghighat. A domain
and type enforcement unix prototype. In SSYM’95:
Proceedings of the 5th conference on USENIX UNIX
Security Symposium, pages 127–140, Berkeley, CA,
USA, 1995. USENIX Association.

[2] John Barkley. Implementing role-based access control
using object technology. In First ACM Workshop on
Role-Based Access Control, November 30 – December
1 1995.

[3] Jeremy Brown and Jr. Thomas F. Knight. A minimal
trusted computing base for dynamically secure infor-
mation flow. Technical Report Aries Project Technical
Report 15, MIT AI Lab, November 2001.

[4] Internet Crime Complaint Center. 2007 internet crime
report. Technical report, The National White Collar
Crime Center, Bureau of Justice Assistance, Federal
Bureau of Investigation, 2007.

[5] David D. Clark and David R. Wilson. A comparison
of commercial and military computer security policies.
In Proceedings of the IEEE Symposium on Security and
Privacy, pages 184–194, 1987.

[6] David F. Ferraiolo and D. Richard Kuhn. Role-based
access controls. In Proceedings of the 15th NIST-NSA
National Computer Security Conference, October 13–
16 1992.

[7] R.D. Greenblatt, T.F. Knight Jr., J. Holloway, D.A.
Moon, and D.L. Weinreb. The lisp machine. In Interac-
tive Programming Enviornments. McGraw-Hill, 1984.

[8] Butler W. Lampson. Protection. In Fifth Prince-
ton Symposium on Information Sciences and Systems,
pages 437–443, March 1971. (reprinted in Operating
Systems Review, 8,1, January 1974, pp. 18 - 24).

[9] Butler W. Lampson. A note on the confinement prob-
lem. Commun. ACM, 16(10):613–615, 1973.

[10] Howard F. Lipson. Tracking and tracing cyber-attacks:
Technical challenges and global policy issues. Tech-
nical Report CMU/SEI-2002-SR-009, CMU CERT,
2002.

[11] Elliot I. Organick. The MULTICS system: An examina-
tion of its structure. The MIT Press, 1972.

[12] Elliot I. Organick. Computer System Organization: The
B5700/B6700 Series. Academic Press, 1973.

[13] Jerry H. Saltzer and Mike D. Schroeder. The protection
of information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, September 1975.

13

